
Package: eRTG3D (via r-universe)
November 3, 2024

Title Empirically Informed Random Trajectory Generation in 3-D

Version 0.7.0

Maintainer Merlin Unterfinger <info@munterfinger.ch>

URL https://munterfi.github.io/eRTG3D/,

https://github.com/munterfi/eRTG3D/

BugReports https://github.com/munterfi/eRTG3D/issues/

Description Creates realistic random trajectories in a 3-D space
between two given fix points, so-called conditional empirical
random walks (CERWs). The trajectory generation is based on
empirical distribution functions extracted from observed
trajectories (training data) and thus reflects the geometrical
movement characteristics of the mover. A digital elevation
model (DEM), representing the Earth's surface, and a background
layer of probabilities (e.g. food sources, uplift potential,
waterbodies, etc.) can be used to influence the trajectories.
Unterfinger M (2018). ``3-D Trajectory Simulation in Movement
Ecology: Conditional Empirical Random Walk''. Master's thesis,
University of Zurich.
<https://www.geo.uzh.ch/dam/jcr:
6194e41e-055c-4635-9807-53c5a54a3be7/MasterThesis_Unterfinger_2018.pdf>.
Technitis G, Weibel R, Kranstauber B, Safi K (2016). ``An
algorithm for empirically informed random trajectory generation
between two endpoints''. GIScience 2016: Ninth International
Conference on Geographic Information Science, 9, online.
<doi:10.5167/uzh-130652>.

Depends R (>= 3.5.0)

Imports CircStats (>= 0.2-6), ggplot2 (>= 3.1.1), pbapply (>= 1.4-1),
plotly (>= 4.9.0), raster (>= 2.9-5), rasterVis (>= 0.45), tiff
(>= 0.1-5)

License GPL-3

Encoding UTF-8

LazyData true

1

https://munterfi.github.io/eRTG3D/
https://github.com/munterfi/eRTG3D/
https://github.com/munterfi/eRTG3D/issues/
https://www.geo.uzh.ch/dam/jcr:6194e41e-055c-4635-9807-53c5a54a3be7/MasterThesis_Unterfinger_2018.pdf
https://www.geo.uzh.ch/dam/jcr:6194e41e-055c-4635-9807-53c5a54a3be7/MasterThesis_Unterfinger_2018.pdf
https://doi.org/10.5167/uzh-130652

2 Contents

RoxygenNote 7.1.2

Suggests knitr (>= 1.23), pander (>= 0.6.3), gridExtra (>= 2.3), plyr
(>= 1.8.4), rmarkdown (>= 1.13), sf (>= 0.7-4), sp (>= 1.3-1),
testthat (>= 2.1.0), covr (>= 3.2.1)

VignetteBuilder knitr

NeedsCompilation no

Repository https://munterfi.r-universe.dev

RemoteUrl https://github.com/munterfi/ertg3d

RemoteRef HEAD

RemoteSha 1165c60772d9a81c1b21ecf490a46a0feb6a0850

Contents
chiMaps . 3
dem . 4
dem2track.extent . 4
dist2point.3d . 5
dist2target.3d . 5
eRTG3D . 6
filter.dead.ends . 6
get.densities.3d . 7
get.glideRatio.3d . 8
get.section.densities.3d . 8
get.track.densities.3d . 9
is.sf.3d . 10
lift2target.3d . 11
logRasterStack . 12
movingMedian . 12
n.sim.cond.3d . 13
n.sim.glidingSoaring.3d . 14
niclas . 16
parpbapply . 16
parpblapply . 17
parpbsapply . 18
plot2d . 19
plot3d . 20
plot3d.densities . 21
plot3d.multiplot . 22
plot3d.tldCube . 22
plotRaster . 23
qProb.3d . 23
reproduce.track.3d . 24
saveImageSlices . 25
sf2df.3d . 26
sim.cond.3d . 27

chiMaps 3

sim.crw.3d . 28
sim.glidingSoaring.3d . 29
sim.uncond.3d . 30
test.eRTG.3d . 31
test.verification.3d . 32
track.extent . 33
track.properties.3d . 34
track.split.3d . 34
track2sf.3d . 35
transformCRS.3d . 35
turn2target.3d . 36
turnLiftStepHist . 37
voxelCount . 38

Index 39

chiMaps Chi maps of two variables

Description

Calculates the chi maps for one rasterStack or all raster all the raster pairs stored in two rasterStacks.
As observed values, the first stack is used. The expected value is either set to the mean of the first
stack, or if given to be the values of the second stack.

Usage

chiMaps(stack1, stack2 = NULL, verbose = FALSE)

Arguments

stack1 rasterStack

stack2 rasterStack NULL or containing the same number of rasterLayers and has
euqal extent and resolution.

verbose logical: print currently processed height band in raster stack?

Value

A rasterStack containing the chi maps.

Examples

print("tbd.")

4 dem2track.extent

dem Example digital elevation model (DEM)

Description

This is data to be included in the package and can be used to test its functionality. The dem data is
a RasterLayer and has a resolution of 90 meters. It is the topography of the Swiss midlands. The
complete dataset can be downloaded directly from http://srtm.csi.cgiar.org/srtmdata/.

References

https://srtm.csi.cgiar.org/srtmdata/

dem2track.extent Crops the DEM to the extent of the track with a buffer

Description

Crops the DEM to the extent of the track with a buffer

Usage

dem2track.extent(DEM, track, buffer = 100)

Arguments

DEM a raster containing a digital elevation model, covering the extent as the track

track data.frame with x,y,z coordinates of the original track

buffer buffer with, by default set to 100

Value

A the cropped digital elevation model as a raster layer.

Examples

dem2track.extent(dem, niclas)

https://srtm.csi.cgiar.org/srtmdata/

dist2point.3d 5

dist2point.3d Distance of each track point to a given point

Description

Distance of each track point to a given point

Usage

dist2point.3d(track, point, groundDistance = FALSE)

Arguments

track a list containing data.frames with x,y,z coordinates or a data.frame
point a vector with x, y or x, y, z coordinates
groundDistance logical: calculate only ground distance in x-y plane?

Value

Returns the distance of each track point to the point.

Examples

dist2point.3d(niclas, c(0, 0, 0))

dist2target.3d Distance to target

Description

Calculates the distance between every point in the track and the last point (target).

Usage

dist2target.3d(track)

Arguments

track a track data.frame containing x, y and z coordinates

Value

A numeric vector with the distances to target

Examples

dist2target.3d(niclas)

6 filter.dead.ends

eRTG3D eRTG3D: Empirically Informed Random Trajectory Generator in 3-D

Description

The empirically informed random trajectory generator in three dimensions (eRTG3D) is an algo-
rithm to generate realistic random trajectories in a 3-D space between two given fix points in space,
so-called Conditional Empirical Random Walks. The trajectory generation is based on empirical
distribution functions extracted from observed trajectories (training data) and thus reflects the ge-
ometrical movement characteristics of the mover. A digital elevation model (DEM), representing
the Earth’s surface, and a background layer of probabilities (e.g. food sources, uplift potential,
waterbodies, etc.) can be used to influence the trajectories.

Details

See the packages site on GitHub, detailed information about the algorithm in this Master’s Thesis,
or test the algorithm online in the eRTG3D Simulator.

filter.dead.ends Remove dead ends

Description

Function to filter out tracks that have found a dead end

Usage

filter.dead.ends(cerwList)

Arguments

cerwList list of data.frames and NULL entries

Value

A list that is only containing valid tracks.

Examples

filter.dead.ends(list(niclas, niclas))

https://munterfi.github.io/eRTG3D/
https://www.geo.uzh.ch/dam/jcr:6194e41e-055c-4635-9807-53c5a54a3be7/MasterThesis_Unterfinger_2018.pdf
https://mufi.shinyapps.io/ertg3d-simulator

get.densities.3d 7

get.densities.3d Extract tldCube and autodifference approximation functions

Description

Creates a list consisting of the three dimensional probability distribution cube for turning angle,
lift angle and step length (turnLiftStepHist) as well as the uni-dimensional distributions of the dif-
ferences of the turn angles, lift angles and step lengths with a lag of 1 to maintain minimal level
of autocorrelation in each of the terms. Additionally also the distribution of the flight height over
the ellipsoid (absolute) and the distribution of flight height over the topography (relative) can be
included.

Usage

get.densities.3d(
turnAngle,
liftAngle,
stepLength,
deltaLift,
deltaTurn,
deltaStep,
gradientAngle = NULL,
heightEllipsoid = NULL,
heightTopo = NULL,
maxBin = 25

)

Arguments

turnAngle turn angles of the track (t)
liftAngle lift angles of the track (l)
stepLength stepLength of the track (d)
deltaLift auto differences of the turn angles (diff(t))
deltaTurn auto differences of the lift angles (diff(l))
deltaStep auto differences of the step length (diff(d))
gradientAngle NULL or the gardient angles of the track
heightEllipsoid

flight height over the ellipsoid (absolute) or NULL to exclude this distribution
heightTopo flight height over the topography (relative) or NULL to exclude this distribution
maxBin numeric scalar, maximum number of bins per dimension of the tld-cube (turn-

LiftStepHist)

Value

A list containing the tldCube and the autodifferences functions (and additionally the flight height
distribution functions)

8 get.section.densities.3d

Examples

niclas <- track.properties.3d(niclas)[2:nrow(niclas),]
P <- get.densities.3d(

turnAngle = niclas$t, liftAngle = niclas$l, stepLength = niclas$d,
deltaLift = diff(niclas$t), deltaTurn = diff(niclas$l), deltaStep = diff(niclas$d),
gradientAngle = NULL, heightEllipsoid = NULL, heightTopo = NULL, maxBin = 25

)

get.glideRatio.3d Calculate glide ratio

Description

Calculates the ratio between horizontal movement and vertical movement. The value expresses the
distance covered forward movement per distance movement in sinking.

Usage

get.glideRatio.3d(track)

Arguments

track a track data.frame containing x, y and z coordinates of a gliding section

Value

The ratio between horizontal and vertical movement.

Examples

get.glideRatio.3d(niclas)

get.section.densities.3d

Extract tldCube and autodifferences functions from track sections

Description

Creates a list consisting of the 3 dimensional probability distribution cube for turning angle, lift
angle and step length (turnLiftStepHist) as well as the uni-dimensional distributions of the differ-
ences of the turning angles, lift angles and step lengths with a lag of 1 to maintain minimal level of
autocorrelation in each of the terms.

get.track.densities.3d 9

Usage

get.section.densities.3d(
trackSections,
gradientDensity = TRUE,
heightDistEllipsoid = TRUE,
DEM = NULL,
maxBin = 25

)

Arguments

trackSections list of track sections got by the track.split.3d function

gradientDensity

logical: Should a distribution of the gradient angle be extracted and later used
in the simulations?

heightDistEllipsoid

logical: Should a distribution of the flight height over ellipsoid be extracted and
later used in the sim.cond.3d()?

DEM a raster containing a digital elevation model, covering the same extent as the
track sections

maxBin numeric scalar, maximum number of bins per dimension of the tld-cube (turn-
LiftStepHist)

Value

A list containing the tldCube and the autodifferences functions (and additionally the height distri-
bution function)

Examples

get.section.densities.3d(list(niclas[1:10,], niclas[11:nrow(niclas),]))

get.track.densities.3d

Extract tldCube and autodifferences functions from a consistent track

Description

Get densities creates a list consisting of the 3 dimensional probability distribution cube for turning
angle, lift angle and step length (turnLiftStepHist) as well as the uni-dimensional distributions of
the differences of the turning angles, lift angles and step lengths with a lag of 1 to maintain minimal
level of autocorrelation in each of the terms.

10 is.sf.3d

Usage

get.track.densities.3d(
track,
gradientDensity = TRUE,
heightDistEllipsoid = TRUE,
DEM = NULL,
maxBin = 25

)

Arguments

track a data.frame with 3 columns containing the x,y,z coordinates
gradientDensity

logical: Should a distribution of the gradient angle be extracted and later used
in the simulations?

heightDistEllipsoid

logical: Should a distribution of the flight height over ellipsoid be extracted and
later used in the sim.cond.3d()?

DEM a raster containing a digital elevation model, covering the same extent as the
track

maxBin numeric scalar, maximum number of bins per dimension of the tld-cube (turn-
LiftStepHist)

Value

A list containing the tldCube and the autodifferences functions (and additionally the height distri-
bution function)

Note

The time between the acquisition of fix points of the track must be constant, otherwise this leads
to distorted statistic distributions, which increases the probability of dead ends. In this case please
check track.split.3d and get.section.densities.3d

Examples

get.track.densities.3d(niclas, heightDist = TRUE)

is.sf.3d Tests if the object is a simple feature collection (class: ’sf,
data.frame’)

Description

Tests if the object is a simple feature collection (class: 'sf, data.frame')

lift2target.3d 11

Usage

is.sf.3d(track)

Arguments

track any object to test

Value

A logical: TRUE if is a simple feature collection (class: 'sf, data.frame') of the sf package, FALSE
otherwise.

Examples

is.sf.3d(niclas)
is.sf.3d(track2sf.3d(track = niclas, CRS = 2056))

lift2target.3d Lift angle to target

Description

Calculates the lift angle between every point in the track and the last point (target).

Usage

lift2target.3d(track)

Arguments

track a track data.frame containing x, y and z coordinates

Value

A numeric vector with the lift angles to target

Examples

lift2target.3d(niclas)

12 movingMedian

logRasterStack Converts a rasterStack to logarithmic scale

Description

Avoids the problem of -Inf occuring for log(0).

Usage

logRasterStack(rStack, standartize = FALSE, InfVal = NA)

Arguments

rStack rasterStack to convert to logarithmic scale

standartize logical: standartize cube between 0 and 1

InfVal the value that Inf and -Inf should be rpeplaced with

Value

A rasterStack in logarithmic scale

Examples

logRasterStack(raster::stack(dem))

movingMedian Moving median in one dimension

Description

Applies a twosided moving median window on a vector, where the window paramter is the total
size of the window. The value in the window middle is the index where the median of the window
is written. Therefore the window size has to be an uneven number. The border region of the vetor
is filled with a one-sided median. There might be border effects.

Usage

movingMedian(data, window)

Arguments

data numeric vector

window uneven number for the size of the moving window

n.sim.cond.3d 13

Value

A numeric vector.

Examples

movingMedian(sequence(1:10), window = 5)

n.sim.cond.3d Conditional Empirical Random Walks (CERW) in 3-D

Description

Creates multiple conditional empirical random walks, with a specific starting and ending point,
geometrically similar to the initial trajectory by applying sim.cond.3d multiple times.

Usage

n.sim.cond.3d(
n.sim,
n.locs,
start = c(0, 0, 0),
end = start,
a0,
g0,
densities,
qProbs,
error = FALSE,
parallel = FALSE,
DEM = NULL,
BG = NULL

)

Arguments

n.sim number of CERWs to simulate

n.locs length of the trajectory in locations

start numeric vector of length 3 with the coordinates of the start point

end numeric vector of length 3 with the coordinates of the end point

a0 initial incoming heading in radian

g0 initial incoming gradient/polar angle in radian

densities list object returned by the get.densities.3d function

qProbs list object returned by the qProb.3d function

error logical: add random noise to the turn angle, lift angle and step length to account
for errors measurements?

14 n.sim.glidingSoaring.3d

parallel logical: run computations in parallel (n-1 cores)? Or numeric: the number of
nodes (maximum: n - 1 cores)

DEM raster layer containing a digital elevation model, covering the area between start
and end point

BG a background raster layer that can be used to inform the choice of steps

Value

A list containing the CERWs or NULLs if dead ends have been encountered.

Examples

niclas <- track.properties.3d(niclas)
n.locs <- 3
P <- get.track.densities.3d(niclas)
f <- 1500
start <- Reduce(c, niclas[1, 1:3])
end <- Reduce(c, niclas[n.locs, 1:3])
a0 <- niclas$a[1]
g0 <- niclas$g[1]
uerw <- sim.uncond.3d(

n.locs * f, start = start, a0 = a0, g0 = g0, densities = P
)
Q <- qProb.3d(uerw, n.locs)
n.sim.cond.3d(

n.sim = 2, n.locs = n.locs,
start = start, end = end,
a0 = a0, g0 = g0,
densities = P, qProbs = Q

)

n.sim.glidingSoaring.3d

Simulates multiple ’gliding & soaring’ tracks with a given number of
gliding steps

Description

Creates conditional empirical random walks in gliding mode, between a start and end point. The
walk is performed on a MODE layer and, if provided, additionally on a background and digital
elevation layer. The gliding is simulated with sim.cond.3d and soaring with sim.uncond.3d, there-
fore soaring is not restricted towards the target and can happen completly free as long as there are
good thermal conditions. It is important to extract for every mode in the MODE raster layer a
corresponding densities object with get.densities.3d and pass them to the function.

n.sim.glidingSoaring.3d 15

Usage

n.sim.glidingSoaring.3d(
n.sim = 1,
parallel = FALSE,
MODE,
dGliding,
dSoaring,
qGliding,
start = c(0, 0, 0),
end = start,
a0,
g0,
error = TRUE,
smoothTransition = TRUE,
glideRatio = 20,
DEM = NULL,
BG = NULL,
verbose = FALSE

)

Arguments

n.sim number of simulations to produce
parallel logical: run computations in parallel (n-1 cores)? Or numeric: the number of

nodes (maximum: n - 1 cores)
MODE raster layer containing the number/index of the mode, which should be used at

each location
dGliding density object returned by the get.densities.3d function for gliding mode
dSoaring density object returned by the get.densities.3d function for soaring mode
qGliding the Q probabilites for the steps in gliding mode (qProb.3d)
start numeric vector of length 3 with the coordinates of the start point
end numeric vector of length 3 with the coordinates of the end point
a0 initial incoming heading in radian
g0 initial incoming gradient/polar angle in radian
error logical: add random noise to the turn angle, lift angle and step length to account

for errors measurements?
smoothTransition

logical: should the transitions between soaring and the following gliding sec-
tions be smoothed? Recommended to avoid dead ends

glideRatio ratio between vertical and horizontal movement, by default set to 15 meters
forward movement per meter vertical movement

DEM raster layer containing a digital elevation model, covering the area between start
and end point

BG a background raster layer that can be used to inform the choice of steps
verbose logical: print current mode used?

16 parpbapply

Value

A list containing ’soaring-gliding’ trajectories or NULLs if dead ends have been encountered.

Note

The MODE raster layer must be in the following structure: Gliding pixels have the value 1 and
soaring pixel the values 2. NA’s are not allowed in the raster.

Examples

print("tbd.")

niclas Example track data.frame

Description

This is data to be included in the package and can be used to test its functionality. The track
consists of x, y and z coordinates and represents the movement of a stork called niclas in the
Swiss midlands.

References

https://www.movebank.org

parpbapply Parallel apply with progressbar

Description

Function detects the operating system and chooses the approximate kind of process for parallelizing
the task: Windows: PSOCKCluster, Unix: Forking.

Usage

parpbapply(
X,
FUN,
MARGIN,
packages = NULL,
export = NULL,
envir = environment(),
nNodes = parallel::detectCores() - 1

)

https://www.movebank.org

parpblapply 17

Arguments

X an array, including a matrix.
FUN function, the function to be applied to each element of X
MARGIN a vector giving the subscripts which the function will be applied over. E.g.,

for a matrix 1 indicates rows, 2 indicates columns, c(1, 2) indicates rows and
columns. Where X has named dimnames, it can be a character vector selecting
dimension names.

packages character vector, Only relevant for Windows: the packages needed in the func-
tion provided, eg. c("MASS", "data.table")

export character vector, Only relevant for Windows: the varibales needed in the func-
tion provided, eg. c("df", "vec")

envir environment, Only relevant for Windows: Environment from which the vari-
ables should be exported from

nNodes numeric, Number of processes to start (unix: best to fit with the available Cores)

Value

Returns a vector or array or list of values obtained by applying a function to margins of an array or
matrix.

Examples

n <- 1000
df <- data.frame(

x = seq(1, n, 1),
y = -seq(1, n, 1)

)
a <- parpbapply(X = df, FUN = sum, MARGIN = 1, nNodes = 2)

parpblapply Parallel lapply with progressbar

Description

Function detects the operating system and chooses the approximate kind of process for parallelizing
the task: Windows: PSOCKCluster, Unix: Forking.

Usage

parpblapply(
X,
FUN,
packages = NULL,
export = NULL,
envir = environment(),
nNodes = parallel::detectCores() - 1

)

18 parpbsapply

Arguments

X a vector (atomic or list) or an expression object. Other objects (including classed
objects) will be coerced by base::as.list

FUN function, the function to be applied to each element of X

packages character vector, Only relevant for Windows: the packages needed in the func-
tion provided, eg. c("MASS", "data.table")

export character vector, Only relevant for Windows: the varibales needed in the func-
tion provided, eg. c("df", "vec")

envir environment, Only relevant for Windows: Environment from which the vari-
ables should be exported from

nNodes numeric, Number of processes to start (unix: best to fit with the available Cores)

Value

A list with the results.

Examples

square <- function(x) {
x * x

}
l <- parpblapply(X = 1:1000, FUN = square, export = c("square"), nNodes = 2)

parpbsapply Parallel sapply with progressbar

Description

Function detects the operating system and chooses the approximate kind of process for parallelizing
the task: Windows: PSOCKCluster, Unix: Forking.

Usage

parpbsapply(
X,
FUN,
packages = NULL,
export = NULL,
envir = environment(),
nNodes = parallel::detectCores() - 1

)

plot2d 19

Arguments

X a vector (atomic or list) or an expression object. Other objects (including classed
objects) will be coerced by base::as.list.

FUN function, the function to be applied to each element of X

packages character vector, Only relevant for Windows: the packages needed in the func-
tion provided, eg. c("MASS", "data.table")

export character vector, Only relevant for Windows: the varibales needed in the func-
tion provided, eg. c("df", "vec")

envir environment, Only relevant for Windows: Environment from which the vari-
ables should be exported from

nNodes numeric, Number of processes to start (unix: best to fit with the available Cores)

Value

A vector with the results.

Examples

square <- function(x) {
x * x

}
s <- parpbsapply(X = 1:1000, FUN = square, export = c("square"), nNodes = 2)

plot2d Plot function to plot the 3-D tracks in 2-D plane

Description

Plot function to plot the 3-D tracks in 2-D plane

Usage

plot2d(
origTrack,
simTrack = NULL,
titleText = character(1),
DEM = NULL,
BG = NULL,
padding = 0.1,
alpha = 0.7,
resolution = 500

)

20 plot3d

Arguments

origTrack a list containing data.frames with x,y,z coordinates or a data.frame

simTrack a list containing data.frames with x,y,z coordinates or a data.frame

titleText string with title of the plot

DEM an object of type RasterLayer, needs overlapping extent with the line(s)

BG an object of type RasterLayer, needs overlapping extent with the line(s)

padding adds a pad to the 2-D space in percentage (by default set to 0.1)

alpha a number between 0 and 1, to specify the transparency of the simulated line(s)

resolution number of pixels the rasters are downsampled to (by default set to 500 pixels)

Value

A ggplot2 object.

Examples

plot2d(niclas)

plot3d Plot track(s) with a surface of a digital elevation model in three di-
mensions

Description

Plot track(s) with a surface of a digital elevation model in three dimensions

Usage

plot3d(
origTrack,
simTrack = NULL,
titleText = character(1),
DEM = NULL,
padding = 0.1,
timesHeight = 10

)

Arguments

origTrack a list containing data.frames with x,y,z coordinates or a data.frame

simTrack a list containing data.frames with x,y,z coordinates or a data.frame

titleText string with title of the plot

DEM an object of type RasterLayer, needs overlapping extent with the line(s)

padding adds a pad to the 2-D space in percentage (by default set to 0.1)

timesHeight multiply the height scale by a scalar (by default set to 10)

plot3d.densities 21

Value

Plots a plotly object

Examples

plot3d(niclas)

plot3d.densities Density plots of turn angle, lift angle and step length

Description

The function takes either one track or two tracks. The second track can be a list of tracks (eg.
the output of n.sim.cond.3d), Then the densities of turn angle, lift angle and step length of all the
simulations is taken. Additionally the autodifferences parameter can be set to true, then the densities
of the autodifferences in turn angle, lift angle and step length are visualized.

Usage

plot3d.densities(
track1,
track2 = NULL,
autodifferences = FALSE,
scaleDensities = FALSE

)

Arguments

track1 a list containing a data.frame with x,y,z coordinates or a data.frame

track2 a list containing a data.frame with x,y,z coordinates or a data.frame
autodifferences

logical: should the densities of the autodifferences in turn angle, lift angle and
step length are visualized.

scaleDensities logical: should densities be scaled between 0 and 1, then sum of the area under
the curve is not 1 anymore!

Value

A ggplot2 object.

Examples

plot3d.densities(niclas)

22 plot3d.tldCube

plot3d.multiplot Multiple plot function for ggplot objects

Description

If the layout is something like matrix(c(1,2,3,3), nrow=2, byrow=TRUE), then plot 1 will go in
the upper left, 2 will go in the upper right, and 3 will go all the way across the bottom.

Usage

plot3d.multiplot(..., plotlist = NULL, cols = 1, layout = NULL)

Arguments

... ggplot objects

plotlist a list of ggplot objects

cols number of columns in layout

layout a matrix specifying the layout. If present, cols is ignored.

Value

Nothing, plots the ggplot2 objects.

Examples

plot3d.multiplot(plot2d(niclas), plot2d(niclas), plot2d(niclas))

plot3d.tldCube Visualize turn-lift-step histogram

Description

Creates a three dimensional scatterplot of the possibles next steps, based on the tldCube, which was
extracted from a track.

Usage

plot3d.tldCube(tldCube)

Arguments

tldCube tldCube; the ouptut from turnLiftStepHist or get.densities.3d

Value

Plots a plotly object

plotRaster 23

Examples

P <- get.track.densities.3d(niclas)
suppressWarnings(plot3d.tldCube(P$tldCube))

plotRaster Plots a rasterLayer or rasterStack

Description

Plots a rasterLayer or rasterStack

Usage

plotRaster(r, title = character(0), centerColorBar = FALSE, ncol = NULL)

Arguments

r rasterLayer or rasterStack

title title text of plot(s)

centerColorBar logical: center colobar around 0 and use RdBuTheme()?

ncol number of columns to plot a stack, by default estimated by the square root

Value

Plots the rasters

Examples

plotRaster(dem)

qProb.3d Q probabilities for n steps

Description

Calculates the Q probability, representing the pull to the target. The number of steps on which the
Q prob will be quantified is number of total segments less than one (the last step is defined by the
target itself).

Usage

qProb.3d(sim, n.locs, parallel = FALSE, maxBin = 25)

24 reproduce.track.3d

Arguments

sim the result of sim.uncond.3d, or a data frame with at least x,y,z-coordinates, the
arrival azimuth and the arrival gradient.

n.locs number of total segments to be modeled, the length of the desired conditional
empirical random walk

parallel logical: run computations in parallel (n-1 cores)? Or numeric: the number of
nodes (maximum: n - 1 cores)

maxBin numeric scalar, maximum number of bins per dimension of the tld-cube (turn-
LiftStepHist)

Value

A list containing the Q - tldCubes for every step

Examples

qProb.3d(niclas, 3)

reproduce.track.3d Reproduce a track with the eRTG3D

Description

Simulates n tracks with the geometrical properties of the original track, between the same start and
end point.

Usage

reproduce.track.3d(
track,
n.sim = 1,
parallel = FALSE,
error = TRUE,
DEM = NULL,
BG = NULL,
filterDeadEnds = TRUE,
plot2d = FALSE,
plot3d = FALSE,
maxBin = 25,
gradientDensity = TRUE

)

saveImageSlices 25

Arguments

track data.frame with x,y,z coordinates of the original track
n.sim number of simulations that should be done
parallel logical: run computations in parallel (n-1 cores)? Or numeric: the number of

nodes (maximum: n - 1 cores)
error logical: add error term to movement in simulation?
DEM a raster containing a digital elevation model, covering the same extent as the

track
BG a raster influencing the probabilities.
filterDeadEnds logical: Remove tracks that ended in a dead end?
plot2d logical: plot tracks on 2-D plane?
plot3d logical: plot tracks in 3-D?
maxBin numeric scalar, maximum number of bins per dimension of the tld-cube (turn-

LiftStepHist)
gradientDensity

logical: Should a distribution of the gradient angle be extracted and used in the
simulations (get.densities.3d)?

Value

A list or data.frame containing the simulated track(s) (CERW).

Examples

reproduce.track.3d(niclas[1:10,])

saveImageSlices Export a dataCube as image slice sequence

Description

Exports a dataCube of type rasterStack as Tiff image sequence. Image sequences are a common
structure to represent voxel data and most of the specific software to visualize voxel data is able to
read it (e.g. blender)

Usage

saveImageSlices(rStack, filename, dir, NaVal = 0)

Arguments

rStack rasterStack to be saved to Tiff image slices
filename name of the image slices
dir directory, where the slices should be stored
NaVal numeric value that should represent NA values in the Tiff image, default is NaVal

= 0

26 sf2df.3d

Value

Saves the Tiff image files.

Examples

crws <- lapply(X = seq(1:100), FUN = function(X) {
sim.crw.3d(nStep = 100, rTurn = 0.99, rLift = 0.99, meanStep = 0.1)

})
points <- do.call("rbind", crws)
extent <- raster::extent(c(-10, 10, -10, 10))
ud <- voxelCount(points, extent,

xyRes = 5,
zMin = -10, zMax = 10, standartize = TRUE

)
saveImageSlices(ud, filename = "saveImageSlices_test", dir = tempdir())

sf2df.3d Converts a sf data.frame to a normal dataframe

Description

Converts a sf data.frame to a normal dataframe

Usage

sf2df.3d(track)

Arguments

track An object of type 'sf, data.frame'

Value

A data.frame.

Examples

sf2df.3d(track2sf.3d(niclas, CRS = 4326))

sim.cond.3d 27

sim.cond.3d Conditional Empirical Random Walk (CERW) in 3-D

Description

Creates a conditional empirical random walk, with a specific starting and ending point, geomet-
rically similar to the initial trajectory (extractMethod: raster overlay method can take "simple" or
"bilinear")

Usage

sim.cond.3d(
n.locs,
start = c(0, 0, 0),
end = start,
a0,
g0,
densities,
qProbs,
error = FALSE,
DEM = NULL,
BG = NULL

)

Arguments

n.locs length of the trajectory in locations

start numeric vector of length 3 with the coordinates of the start point

end numeric vector of length 3 with the coordinates of the end point

a0 initial incoming heading in radian

g0 initial incoming gradient/polar angle in radian

densities list object returned by the get.densities.3d function

qProbs list object returned by the qProb.3d function

error logical: add random noise to the turn angle, lift angle and step length to account
for errors measurements?

DEM raster layer containing a digital elevation model, covering the area between start
and end point

BG a background raster layer that can be used to inform the choice of steps

Value

A trajectory in the form of data.frame

28 sim.crw.3d

Examples

niclas <- track.properties.3d(niclas)
n.locs <- 3
P <- get.track.densities.3d(niclas)
f <- 1500
start <- Reduce(c, niclas[1, 1:3])
end <- Reduce(c, niclas[n.locs, 1:3])
a0 <- niclas$a[1]
g0 <- niclas$g[1]
uerw <- sim.uncond.3d(

n.locs * f, start = start, a0 = a0, g0 = g0, densities = P
)
Q <- qProb.3d(uerw, n.locs)
sim.cond.3d(

n.locs = n.locs, start = start, end = end,
a0 = a0, g0 = g0, densities = P, qProbs = Q

)

sim.crw.3d Simulation of a three dimensional Correlated Random Walk

Description

Simulation of a three dimensional Correlated Random Walk

Usage

sim.crw.3d(nStep, rTurn, rLift, meanStep, start = c(0, 0, 0))

Arguments

nStep the number of steps of the simulated trajectory

rTurn the correlation on the turn angle

rLift the correlation of the lift angle

meanStep the mean step length

start a vector of length 3 containing the coordinates of the start point of the trajectory

Value

A trajectory in the form of data.frame

Examples

sim.crw.3d(nStep = 10, rTurn = 0.9, rLift = 0.9, meanStep = 1, start = c(0, 0, 0))

sim.glidingSoaring.3d 29

sim.glidingSoaring.3d Simulates ’gliding & soaring’ track with a given number of gliding
steps

Description

Creates a conditional empirical random walk in gliding mode, between a start and end point. The
walk is performed on a MODE layer and, if provided, additionally on a background and digital
elevation layer. The gliding is simulated with sim.cond.3d and soaring with sim.uncond.3d, there-
fore soaring is not restricted towards the target and can happen completly free as long as there are
good thermal conditions. It is important to extract for every mode in the MODE raster layer a
corresponding densities object with get.densities.3d and pass them to the function.

Usage

sim.glidingSoaring.3d(
MODE,
dGliding,
dSoaring,
qGliding,
start = c(0, 0, 0),
end = start,
a0,
g0,
error = TRUE,
smoothTransition = TRUE,
glideRatio = 15,
DEM = NULL,
BG = NULL,
verbose = FALSE

)

Arguments

MODE raster layer containing the number/index of the mode, which should be used at
each location

dGliding density object returned by the get.densities.3d function for gliding mode

dSoaring density object returned by the get.densities.3d function for soaring mode

qGliding the Q probabilites for the steps in gliding mode (qProb.3d)

start numeric vector of length 3 with the coordinates of the start point

end numeric vector of length 3 with the coordinates of the end point

a0 initial incoming heading in radian

g0 initial incoming gradient/polar angle in radian

error logical: add random noise to the turn angle, lift angle and step length to account
for errors measurements?

30 sim.uncond.3d

smoothTransition

logical: should the transitions between soaring and the following gliding sec-
tions be smoothed? Recommended to avoid dead ends

glideRatio ratio between vertical and horizontal movement, by default set to 15 meters
forward movement per meter vertical movement

DEM raster layer containing a digital elevation model, covering the area between start
and end point

BG a background raster layer that can be used to inform the choice of steps

verbose logical: print current mode used?

Value

A ’soaring-gliding’ trajectory in the form of data.frame

Note

The MODE raster layer must be in the following structure: Gliding pixels have the value 1 and
soaring pixel the values 2. NA’s are not allowed in the raster.

Examples

print("tbd.")

sim.uncond.3d Unconditional Empirical Random Walk (UERW) in 3-D

Description

This function creates unconditional walks with prescribed empirical properties (turning angle, lift
angle and step length and the auto-differences of them. It can be used for uncon- ditional walks or
to seed the conditional walks with comparably long simulations. The conditional walk connecting
a given start with a certain end point by a given number of steps needs an attraction term (the Q
probability, see qProb.3d) to ensure that the target is approached and hit. In order to calculate the Q
probability for each step the distribution of turns and lifts to target and the distribution of distance
to target has to be known. They can be derived from the empirical data (ideally), or estimated from
an unconditional process with the same properties. Creates a unconditional empirical random walk,
with a specific starting point, geometrically similar to the initial trajectory.

Usage

sim.uncond.3d(n.locs, start = c(0, 0, 0), a0, g0, densities, error = TRUE)

test.eRTG.3d 31

Arguments

n.locs the number of locations for the simulated track

start vector indicating the start point c(x,y,z)

a0 initial heading in radian

g0 initial gradient/polar angle in radian

densities list object returned by the get.densities.3d function

error logical: add random noise to the turn angle, lift angle and step length to account
for errors measurements?

Value

A 3 dimensional trajectory in the form of a data.frame

Note

Simulations connecting start and end points with more steps than 1/10th or more of the number
of steps of the empirical data should rather rely on simulated unconditional walks with the same
properties than on the empirical data (factor = 1500).

Random initial heading

For a random initial heading a0 use: sample(atan2(diff(coordinates(track)[,2]), diff(coordinates(track)[,1])),1)

Examples

sim.uncond.3d(
10, start = c(0, 0, 0), a0 = pi / 2, g0 = pi / 2,
densities = get.track.densities.3d(niclas)

)

test.eRTG.3d Test the functionality of the eRTG3D

Description

The test simulates a CRW with given parameters and reconstructs it by using the eRTG3D

Usage

test.eRTG.3d(
parallel = FALSE,
returnResult = FALSE,
plot2d = FALSE,
plot3d = TRUE,
plotDensities = TRUE

)

32 test.verification.3d

Arguments

parallel logical: test running parallel?

returnResult logical: return tracks generated?

plot2d logical: plot tracks on 2-D plane?

plot3d logical: plot tracks in 3-D?

plotDensities logical: plot densities of turning angle, lift angle and step length?

Value

A list containing the original CRW and the simulated track (CERW).

Examples

test.eRTG.3d()

test.verification.3d Statistical Verification of the simulated track

Description

Uses two-sample Kolmogorov-Smirnov test or the one-sample t-test to compare the geometric char-
acteristics of the original track with the characteristics of the simulated track.

Usage

test.verification.3d(track1, track2, alpha = 0.05, plot = FALSE, test = "ks")

Arguments

track1 data.frame or list of data.frames with x,y,z coordinates of the original track

track2 data.frame or list of data.frames with x,y,z coordinates of the simulated track

alpha scalar: significance level, default alpha = 0.05

plot logical: plot the densities or differences of turn angle, lift angle and step length
of the two tracks?

test character: either "ks" or "ttest" to choose the kind of test procedure.

Value

Test objects of the 6 two-sample Kolmogorov-Smirnov test conducted.

track.extent 33

Note

By choosing test = "ttest" a random sample, without replacement is taken from the longer track,
to shorten it to the length of the longer track. The order of the shorter track is also sampled randomly.
Then the two randomly ordered vectors of turn angles, lift angles and step lengths are substracted
from each other. If the both tracks stem from the same distributions the the mean deviatio should
tend to towards zero, therefore the difference is tested two-sided against mu = 0 with a one-sample
t-test.

By setting test = "ks" a two-sample Kolmogorov-Smirnov test is carried out on the distributions
of turn angles, lift angles and step lengths of the two tracks.

Examples

test.verification.3d(niclas, niclas)

track.extent Extent of track(s)

Description

Extent of track(s)

Usage

track.extent(track, zAxis = FALSE)

Arguments

track a list containing data.frames with x,y,z coordinates or a data.frame

zAxis logical: return also the extent of the Z axis?

Value

Returns an extent object of the raster package in the 2–D case and a vector in the 3–D case.

Examples

track.extent(niclas, zAxis = TRUE)

34 track.split.3d

track.properties.3d Track properties of a 3-D track

Description

Returns the properties (distances, azimuth, polar angle, turn angle & lift angle) of a track in three
dimensions.

Usage

track.properties.3d(track)

Arguments

track data.frame with x,y,z coordinates

Value

The data.frame with track properties

Examples

track.properties.3d(niclas)

track.split.3d This function splits the by outliers in the time lag.

Description

The length of timeLag must be the the track’s length minus 1 and represents the time passed between
the fix point acquisition

Usage

track.split.3d(track, timeLag, lag = NULL, tolerance = NULL)

Arguments

track track data.frame with x, y and z coordinates

timeLag a numeric vector with the time passed between the fix point acquisition

lag NULL or a manually chosen lag

tolerance NULL or a manually chosen tolerance

Value

A list containing the splitted tracks.

track2sf.3d 35

Examples

track.split.3d(
niclas,
timeLag = rep(1, nrow(niclas) - 1) + rnorm(nrow(niclas) - 1,
mean = 0,
sd = 0.25)

)

track2sf.3d Converts a track to a ’sf, data.frame’

Description

Converts a track to a 'sf, data.frame'

Usage

track2sf.3d(track, CRS = NA)

Arguments

track eRTG3D track data.frame or a matrix

CRS numeric, EPSG code of the CRS

Value

A track of type 'sf, data.frame'.

Examples

track2sf.3d(niclas, 4326)

transformCRS.3d Transform coordinates reference system (CRS) of a 3-D track

Description

Attention: Please use this function for CRS transformations, since it is based on the st_transform
from the sf package and therefore supports CRS transformations in 3-D. Note: spTransform from
the sp package only supports transformations in the 2D plane, which will cause distortions in the
third dimension.

Usage

transformCRS.3d(track, fromCRS, toCRS)

36 turn2target.3d

Arguments

track data.frame with x,y,z coordinates

fromCRS numeric, EPSG code of the current CRS

toCRS numeric, EPSG code of the CRS to be converted in

Value

A data.frame containing x,y,z and variables.

Examples

transformCRS.3d(niclas, fromCRS = 2056, toCRS = 4326)

turn2target.3d Turn angle to target

Description

Calculates the turn angle between every point in the track and the last point (target).

Usage

turn2target.3d(track)

Arguments

track a track data.frame containing x, y and z coordinates

Value

A numeric vector with the turn angles to target

Examples

turn2target.3d(niclas)

turnLiftStepHist 37

turnLiftStepHist Three dimensional histogram

Description

Derives a three dimensional distribution of a turn angle, lift angle and step length, using the Freed-
man–Diaconis rule for estimating the number of bins.

Usage

turnLiftStepHist(
turn,
lift,
step,
printDims = TRUE,
rm.zeros = TRUE,
maxBin = 25

)

Arguments

turn numeric vector of turn angles

lift numeric vector of lift angles

step numeric vector of step lengths

printDims logical: should dimensions of tld-Cube be messaged?

rm.zeros logical: should combinations with zero probability be removed?

maxBin numeric scalar, maximum number of bins per dimension of the tld-cube.

Value

A three dimensional histogram as data.frame

Examples

niclas <- track.properties.3d(niclas)[2:nrow(niclas),]
turnLiftStepHist(niclas$t, niclas$l, niclas$d)

38 voxelCount

voxelCount Apply voxel counting on a point cloud

Description

A rasterStack object is created, representing the 3–D voxel cube. The z axis is sliced into regular
sections between the maximum and minimum value. For every height slice a raster with points per
cell counts is created. Additionally the voxels can be standartized between 0 and 1.

Usage

voxelCount(
points,
extent,
xyRes,
zRes = xyRes,
zMin,
zMax,
standartize = FALSE,
verbose = FALSE

)

Arguments

points a x, y, z data.frame

extent a raster extent object of the extent to create the rasters

xyRes resolution in the ground plane of the created rasters

zRes resolution in the z axis (by default zRes = xyRes)

zMin minimum z value

zMax maximum height value

standartize logical: standartize the values?

verbose logical: print currently processed height band in raster stack?

Value

A rasterStack object, representing the 3–D voxel cube.

Examples

voxelCount(niclas, raster::extent(dem), 100, 100, 1000, 1400, standartize = TRUE)

Index

∗ data
dem, 4
niclas, 16

chiMaps, 3

dem, 4
dem2track.extent, 4
dist2point.3d, 5
dist2target.3d, 5

eRTG3D, 6

filter.dead.ends, 6

get.densities.3d, 7, 13–15, 22, 25, 27, 29,
31

get.glideRatio.3d, 8
get.section.densities.3d, 8, 10
get.track.densities.3d, 9

is.sf.3d, 10

lift2target.3d, 11
logRasterStack, 12

movingMedian, 12

n.sim.cond.3d, 13, 21
n.sim.glidingSoaring.3d, 14
niclas, 16

parpbapply, 16
parpblapply, 17
parpbsapply, 18
plot2d, 19
plot3d, 20
plot3d.densities, 21
plot3d.multiplot, 22
plot3d.tldCube, 22
plotRaster, 23

qProb.3d, 13, 15, 23, 27, 29, 30

reproduce.track.3d, 24

saveImageSlices, 25
sf2df.3d, 26
sim.cond.3d, 13, 14, 27, 29
sim.crw.3d, 28
sim.glidingSoaring.3d, 29
sim.uncond.3d, 14, 24, 29, 30
st_transform, 35

test.eRTG.3d, 31
test.verification.3d, 32
track.extent, 33
track.properties.3d, 34
track.split.3d, 9, 10, 34
track2sf.3d, 35
transformCRS.3d, 35
turn2target.3d, 36
turnLiftStepHist, 7–10, 22, 24, 25, 37

voxelCount, 38

39

	chiMaps
	dem
	dem2track.extent
	dist2point.3d
	dist2target.3d
	eRTG3D
	filter.dead.ends
	get.densities.3d
	get.glideRatio.3d
	get.section.densities.3d
	get.track.densities.3d
	is.sf.3d
	lift2target.3d
	logRasterStack
	movingMedian
	n.sim.cond.3d
	n.sim.glidingSoaring.3d
	niclas
	parpbapply
	parpblapply
	parpbsapply
	plot2d
	plot3d
	plot3d.densities
	plot3d.multiplot
	plot3d.tldCube
	plotRaster
	qProb.3d
	reproduce.track.3d
	saveImageSlices
	sf2df.3d
	sim.cond.3d
	sim.crw.3d
	sim.glidingSoaring.3d
	sim.uncond.3d
	test.eRTG.3d
	test.verification.3d
	track.extent
	track.properties.3d
	track.split.3d
	track2sf.3d
	transformCRS.3d
	turn2target.3d
	turnLiftStepHist
	voxelCount
	Index

